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The capacity of a free-space optical channel with received background noise using a
multimode direct detection receiver is derived under both peak and average signal power
constraints and without a signal bandwidth constraint. A random telegraph wave type
signalling scheme of Kabanov is shown to achieve capacity provided enough signalling
bandwidth is available. In the absence of received background noise, an optimally coded
PPM system is shown to achieve capacity with greatly reduced bandwidth as compared to

Kabanov signals.

l. Introduction

There has been considerable research on optical communi-
cation systems in recent years. In particular there is consider-
able interest (Refs. 1-6) in determining the channel capacity or
the maximum theoretically attainable information rate at
which reliable communication is possible over optical chan-
nels. This article is concerned with the channel capacity of a
free-space optical communication system. The reliability of
such channels is affected by the quantum mechanical limita-
tions on the measurement of the received optical field as well
as the presence of noise in the received field. In addition the
channel capacity depends on the particular type of receiver
employed — for example, coherent linear amplifier receivers,
heterodyne receivers, homodyne receivers and direct detection
receivers. Furthermore, constraints imposed on the allowable
transmitted signal power also affect the available channel
capacity.

In order to put the results of this paper in proper perspec-
tive, we briefly review related work. Gordon’s benchmark
work (Ref. 1) gave the ultimate capacity of any free-space

optical communication system under an average signal power
constraint. This value of channel capacity determined by
Gordon (Ref. 1) places no limitation on the receiver employed
other than the quantum mechanical limitation on the accuracy
of measurement of the received optical field and the presence
of additive noise in the received field. Hence it represents the
maximum reliable information rate that can be attained by
any system. The importance of this result notwithstanding, the
channel capacity with specified receiver structures is also of
interest. Gordon (Ref. 1) has obtained the channel capacity
using coherent amplification, heterodyne and homodyne
receivers respectively. These channel capacities are substan-
tialty less than the ultimate channel capacity.

We are concerned here with determining the channel capa-
city using a direct detection or photon counting receiver. In
direct detection systems, the photon counter output can be
modeled by a Poisson process with a stochastic intensity rate
function (Refs. 8, 10, 17). The stochastic intensity rate pro-
cess describes the average rate at which photoelectrons are
generated by the detector. It contains stochastic signal and
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stochastic noise components. The noise component in the
stochastic intensity rate process arises because of the back-
ground noise observed in the receiver’s field of view and can be
modeled by a Gaussian white noise process (Refs.8, 17).
However, for the purpose of determining channel capacity,
this Poisson model does not appear to be tractable without
further simplifying assumptions. This is because of the diffi-
culty in dealing with the Gaussian white noise component in
the stochastic intensity rate process of the Poisson process.
This problem is of course not present in situations of negligible
background noise, thus removing the Gaussian white noise
component from the stochastic intensity rate process model.
This is the situation considered for example in Refs. 3-5,
where the channel capacity is obtained under various signal
power constraints and signal modulation constraints.

We are concerned here with the situation when the back-
‘ground noise cannot be neglected. Suppose also that the
receiver either observes many spatial modes (i.e., a large field
of view) and/or many temporal modes exist (i.e., the signal
bandwidth is much smaller than the receiver’s optical band-
width) (Ref. 17). Then the stochastic photon arrival rate due
to the background noise can be replaced by its expected value
(Ref.17). This is the situation considered here. Kabanov
(Ref. 6) has previously derived the channel capacity in-this
situation under a peak signal power constraint. We shall extend
his results by considering simultaneously a peak and an average
signal power constraint. Finally, consider the other situation
of a small number of spatial and temporal modes. This is the
situation of a small field of view at the receiver and signal
bandwidths approaching the optical bandwidth of the receiver.
In this case Pierce et al. (Ref. 18) have determined the channel
capacity.

Summarizing, this article is concerned with a free-space
optical communication system using a direct detection
receiver. It is assumed that the receiver either observes a large
number of spatial modes and/or a large number of temporal
modes. This is generally called a multimode direct detection
system. The main result of this article (Theorem 1, Section IT)
gives the average and peak power constrained channel capacity
in this situation. The derivation of this theorem is given in
Section III. A random telegraph wave type signalling scheme
due to Kabanov (Ref. 6) is shown to achieve capacity provided
that sufficient signalling bandwidth is available. Finally, in the
case of no background noise, it is shown in Section IV that the
channel capacity can be achieved using M-ary pulse position
modulation (PPM) along with coding, provided that sufficient
signalling bandwidth is available. It is also shown that the
coded PPM signalling scheme achieves capacity with a greatly
reduced bandwidth as compared to the Kabanov signalling
scheme.
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ll. Channel Capacity

Consider an optical channel using an intensity modulated
light source transmitter and a multimode direct detection
receiver with an ideal photodetector. The transmission
medium is assumed to be free space so that no degradation
other than a geometric power loss is imparted on the trans-
mitted light beam. The receiver light power at the photo-
detector is assumed to be weak (Ref.7) so that the photo-
detector current output can be characterized by the sequence
of time instants of the photon absorption photoelectron emis-
sion process of the photodetector. We can then model the
photodetector output in terms of a counting process {N(z):
t = 0} where N(¥) = number of photoelectron emission events
in (0, 7). Hence this type of receiver is often called a “photon
counter.” It has been shown (Refs. 8, 17) that N(¢) can be
modeled as a conditionally Poisson counting process given the
intensity of the received light process at the photodetector.
Let A(?) be the instantaneous average rate at which photoelec-
trons are generated at time ¢ in units of photons per second.
We shall assume that A(¢) is given by

) = A (D) +7 6

where A(?) is the instantaneous average rate at which photo-
electrons are generated as a result of the received signal field
and 72 is the average rate of photoelectron generation due to
the received background noise field and detector dark current.
We shall assume that 7 is constant since the receiver is assumed
to be multimodal (Ref. 17). Let {S(¢)} be the information
bearing message stochastic process that is transmitted. Since
A((#) depends on this process {S(#)}, it is also a stochastic
process. In the case where there is instantaneous feedback
from the photodetector output to the transmitter, A () can in
addition also depend on {N(7): 0 <7 <t¢}. In this case {V(?)}
is referred to as a compound regular point process by Rubin
(Ref. 9), who first studied detection problems involving these
processes. In the case where there is no feedback link of any
kind present, A,(f) depends only on the external message signal
process {S(#)}. In this case {M()} is often called a doubly
stochastic Poisson process (Ref. 10). In either case, the sto-
chastic process {A(¢)} given by Eq. (1) is usually called the
intensity rate process of the point process {N(z)}. We shall call
{A\;(#)} the signal intensity rate process.

The goal of this article is to determine the channel capacity
with constraints on the average and the peak received light
signal power. Since A (?) is directly proportional to the instan-
taneous received signal power, we shall impose peak and aver-
age value constraints on the admissible A(f) processes in
calculating the channel capacity. In order to define the chan-
nel capacity, denote




S, = {8() :0<r<T}, )
Np={N@):0<t<T}, -3
Agp =A@ 0<t<T], )

for each T > 0. Also let I(S;; N) = average mutual informa-
tion between S, and N, (in units of nats).

For each 0<5<p, let € §,p) denote the class of all
message processes {S(#)} and signal intensity rate processes
{ A ()} satisfying the following conditions:

(a) A, is a deterministic function of S for each 7> 0.
(b) O<A(O<p (%)
(¢) Forevery T>0,

A T
Gr0\p) = 5 f E\(@)] dt <5. ©)
0

We shall use €5, p) as the admissible class of message pro-
cesses and signal intensity rate processes for calculating the
channel capacity without feedback. In particular, for each
T > 0 define

C,5.5) = sup TSN ()

@, A (e €GB
By definition (Ref. 11),

CG,p) = lim C,,5) (8)

T>c0

is the channel capacity (in units of nats per second) without
feedback under peak power constraint Eq.(5) and average
power constraint Eq. (6). It is clear that the maximization in
Eq. (7) is over all possible message processes {S(#)} and over all
possible modulation formats by varying A (). Moreover
Eq. (5) limits the received peak signal power and Eq. (6) limits

the received average signal power.

Next let 6 (5,p) denote the class of all message processes
{S(#)} and signal intensity rate processes {A;(¢)} satisfying the
conditions (b) and (c) above along with the following condi-
tion (a') in place of (a) above:

(a") A, is a deterministic function of S.. and N.. for each
T>0 T

Then €(f,p) will be the admissible class of message and
signal intensity rate processes used to calculate the channel
capacity with feedback. That is, define

- - 1
CprS,D) = sup ~T—I(ST;NT )]

(5@ A1)} e € 15, 5)

for each T > 0 and let
Cp(,5) = im  Cpy(5, ). (10)

T—>oo

Cr(5,P) is the channel capacity (in units of nats per second)
with feedback under peak power constraint Eq, (5) and aver-
age power constraint Eq. (6). The presence of instantaneous
feedback arises through the possible dependence of the modu-
lation format A((#) on the photodetector output as given by
condition (a") defining € (5, P). The following theorem gives
an expression for ((§, p) and also shows that C(§, §) = Cx(§, §).
That is, the use of instantaneous noiseless feedback does not
increase channel capacity. This feedback result is really just a
special case of a similar result (Ref. 19) that is valid for all
memoryless channels. The Poisson optical channel considered
here is also a memoryless channel.

Theorem 1

Let

0 = min {s,(ﬁ +7) exp[—glog (1 +%)— 1] - Fl} photons/sec.

@11
Then
Cp(5,8) = CG,b)
where
CG,p) = (1 -%)ﬁ log 7 +(%)(;3-!—Fz)log([) +7)
- (0 + 77) log (0 + 7)) nats/second. (12)

Moreover, in order to achieve channel capacity with or with-
out feedback, the received average signal power must be o
photons/second.

The case when #=0 corresponds to the situation where
there are no received photons due to extraneous background
radiation and when the detector dark current is zero. This
situation has received considerable recent attention
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(Refs. 3-5). Setting 7i=0 in the above theorem vyields the
following expression for channel capacity in the no back-
ground noise case.

Corollary 1
When
i = 0,C,G,p) = CG,5),
where
C@s,p) = olog—lz— nats/sec. (13)
and
o = min (§, ¢! p) photons/sec. (14)

is the received average signal power required to achieve chan-
nel capacity.

Since the average received signal power § is always less than
or equal to the peak received signal power p, then by setting
§=p we effectively remove the constraint on the average
received signal power. That is, Cr(D, p) and C(P, p) are respec-
tively the peak power constrained channel capacity with feed-
back and the peak power constrained channel capacity with-
out feedback. Hence we obtain the following corollary.

Corollary 2

Under only a peak received signal power constraint of p,
the channel capacity with feedback is C(p, p) and the chan-
nel capacity without feedback is C(P,p). Then Cx(p,p)=
C(p, p) is given by Eq. (12) with

o= ({H+hn) exp[—g—log (1 +§~)—1] -A. (15)

Proof

We need only show that p > o given by Eq.(11). This is
true because it is clear that

i p
- =-1<
(EafiBfizo a0
by using the inequality log (1 + x) <x. Q.ED.
We note that Kabanov’s expression (Ref. 6) for the peak

received signal power constrained channel capacity when 7 = 1
is a special case of Corollary 2.
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In most laser communication systems, the available peak
signal power is usually substantially greater than the available
average signal power. The usual case is that p>>3§. It is
interesting to note that in contrast to additive Gaussian noise
channels (Ref. 13), the primary constraint on the available
channel capacity is the available peak signal power, rather than
the available average signal power. This can be easily seen from
Egs. (11) and (12) where for a fixed background noise level 7i
and fixed available average signal power §, the channel capacity
C@, P) can be made arbitrarily large by making the available
peak signal power p arbitrarily large. We also note in this
regard that constraining only the available peak signal power
results in an unrealistically large estimate of the maximum
achievable reliable information rate of the channel. This can be
seen more readily in the no background noise case (7=0),
where the peak signal power constrained channel capacity: is

C(,D) = ¢! p nats/sec amn

and the average and peak signal power constrained capacity is
CG,p) = Elog(—%) nats/sec (18)

when p 2 e 3. So in the usual case when p >>§>> 1, ((F, p)
is substantially smaller than C(p, ). For example, in a deep
space optical channel, present technology (Ref. 5) can achieve
a system with negligible background noise, § = 104 photons/
sec and p =107 photons/sec. Then C(F, )= 6.9 X 104 nats/
sec and C(p,p)= 3.7X 10% nats/sec. We also note from
Eq. (13) that in order to achieve C(p,p), § must be at least
el p. In a laser communication system, the available peak
signal power must be reduced considerably to attain such a
high average to peak signal power ratio. Similar conclusions
can be reached in the case where there is background noise
present.

The derivation of Eq.(11) and (12) follows Kabanov’s
approach (Ref. 6) and involves the following two steps:

(1) The first step establishes the formula Eq. (12) as an
upper bound on Cg(§, ) and so also an upper bound
on C(8, p).

(2) The second step gives a sequence of message processes

{Sm(t):0<t<T}

and signal intensity rate processes

M@ 0<e<T)




belonging to € (5, /) (see Eqs. (48) and (51) in Sec-
tion III) with average mutual information I(S,, ; Nz)
and demonstrates that I(S,,-; Ny)/T converges to
Eq. (12) as m tends to infinity. This then proves that
the upper bound in Step (1) can be achieved and is
equal to C(§, p) and C(§, p).

The technical details involved in these two steps are discussed
in the next section of this article.

The optical signalling bandwidth of this photon counting
optical communication system can be taken to be the band-
width of the signal intensity rate process. Section IV of this
article investigates the optical signalling bandwidth required to
achieve channel capacity. The bandwidth of the signal inten-
sity rate process {?xf_m)(t)} used in Step (2) above to achieve
channel capacity is determined and is shown to be unbounded
as m tends to infinity. Thus the formula Eq.(12) is the
channel capacity without bandwidth constraint. The rate at
which the bandwidth of {Ag’")(t)} increases as capacity is
approached is also derived. In the case where there is no
background noise, an optimally coded pulse-position modula-
tion (PPM) system is shown to be capable of achieving channel
capacity at a reduced bandwidth as compared to the signalling
scheme used in Step (2). The reader who is more interested in
these results than the involved technical details in Section III
can skip that section and go directly to Section IV without
essential loss of continuity. Section V relates the results of this
article to previous work.

lll. Derivation of Channel Capacity

We first carry out Step (1) to establish that Eq. (12) is an
upper bound on Cg(F,p) and hence also an upper bound on
C(5, p) since C(F,P)< Cp(5,P). In order to examine Eqs. (6)
and (7) we must use the following formula for the average
mutual information, which is valid for all {(S(), A[(£)} in
ig F(‘ST: ﬁ)

T
I(S;N.) = f {E[(\) + 7) log a0+ ] .
0

-EIQ® +Dlog OO+ }Ydt  (19)
where

N0 = EDOIN] (20)

-

is the conditional mean estimator of A (¢) given observations
N,= {N(1):0<7<1t}). The formula Eq.(19) is given in

Ref. 12. We provide 4 formal derivation of Eq. (19) in Appen-
dix A for completeness. Note from Eq. (20) that I(S;; Ny)
depends on S only through A .. So denote

A
KSpNp) = IO ). 1)

Note that since the function f(x) = x log x is convex, Jensen’s
inequality gives

E[(R () + ) log (A () + )]
> [BR,0) +7)] log [EQ () + 7))
= [EQ\(1) + )] log [EQ\(2) + )], (22)

the last equality following since £ ﬁs(t)] = E[E\@IN,]] =
E[2\(®)]. Hence Eqgs. (19) and (22) yield

T
I ) < f {E[\(5) + ) log (A () + )]
0

- [BEQ\() + )] log [E(A(?) + )]} dt

A
=IO - (23)

From Egs. (9), (21) and (23) we have the following upper
bound on Cppl5, 5):

A

TCFT(E’ p.) < Sup J(AST) = JT(E, ﬁ) .

{5@, AN} ¢ €5, B)
(24)

We shall solve the optimization problem Eq. (24) to deter-
mine J(§, 7). Let us first introduce a slack variable for this
optimization problem to change the inequality constraint
Eq.(6) to an equality constraint. In particular, define
D (5, P) to be the set of all message processes {S(¢)}, signal
intensity rate processes {A,(f)} and nonnegative numbers x
such that conditions (a') and (b) in the definition of €y (5, p)
hold and such that

0<x<§, (25)
G\ ) tx =5, (26)

Then it is clear from the definitions of € (5, p) and Dy (§, b),
and Eqs. (24) through (26) that
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I (,0) = sup I 27
6, {S@, A @)D € DpE, P)

Let us next introduce the Lagrange multiplier for the equal-
ity constraint Eq.(26) in the optimization problem Eq. (27).
In particular define &,(p) to be the set of all message pro-
cesses {S()} and signal intensity rate processes {A(#)}such
that conditions (a') and (b) in the definition of €(5, §) hold.

Now for each real number u =0, consider the following
optimization problem:

sup JA ) - wlGp(A ) tx].
0<x <%

{5, A @D} € B(B) (28)

The following proposition then relates (28) to (27).

Proposition 1

_ Suppose there exists a x*e [0,5] and {(S*(®), AF¥()}e
% (P) which achieves the supremum in Eq.(28) for some
u=>0 so that (x*, {(S*(¥), A¥()D € D (5, p). Then this (x*,
{(S*(2), \¥(1))) achieves the supremum in Eq. (27).

Comment

This proposition essentially says that if we find a Lagrange
multiplier #>0 so that the solution of the optimization
problem Eq. (28) is also feasible for the optimization problem
Eq. (27), then this solution of Eq, (28) also solves Eq. (27).
Note that since J(A;s) is not concave in A p, generalized
Kuhn-Tucker theorems valid in function space could not be
invoked here to obtain this proposition.

Proof
By hypothesis,

(X*’ {(S*(t): >\;k(z.))]') € @F(s-, ﬁ)-
So from Eq. (27),

JON) <TG, ), (29)

where

A% = M) 0<t<T}

56

But for this u =0, it follows from Eqs. (26) and (27) that

J8,p) = sup T )
&, {5@, A DD € D5, D)

= sup
(2 {S@, AN € D, B)

Kkﬂ

- UGy p) +x - 5]

nNe

_sup JO
0<x<§

{5, AN} € BB

- u[Gp(A ) +x - 5]

@
= J()\:T) - M[GT()\;‘T) +x* - S‘-]

)

= 103, (30)

where @ is because (x, {(S(D), AN € Dp(§, p) implies that
0<x<Fand {(5@), \())} e D 2(0);Qis because (x*, {(S*(),
A¥(£)))) achieves the supremum in Eq. (28); and @is because by
hypothesis G (A¥;)+ x*=5§ since (x*, {(S*(#), \j@)De
D (8, p). Then Egs. (29) and (30) establish the proposition.
Q.E.D.

We shall solve the optimization problem Eq. (27) by finding
a solution of Ec. (28) which satisfies the hypothesis of Propo-
sition 1. Let u =0 be arbitrary for the time being. We shall
restrict u later. The optimization problem Eq.(28) may be
written as

sup { sup T p) - vG (A - ux}.

0<x<F {(S). AN} e BL(B)

@31)

Then from Egs. (6) and (23) we have

sup T\ ) - G\ p)
{S8@®, AN} e TP




T
s [ o060 D00
{8, A ()} € BB Y0

- [EQ(@) + )] log [EQ () + 7)]
- (—%)E[?\S(t)]} dt

21 s {BIA+ D I0g A+ )
NeF(D)

- A+ )] Tog [EA + )] - (4)ETATY, (32

where & (p) is the set of all random variables A such that
0 <A <p. To establish D jn Eq. (32), note that for each ¢ €
[0, T], the integrand in the preceding line cannot be larger
than [1/T X last line of Eq.(32)]. Hence the last line of
Eq. (32) is an upper bound. This upper bound can be achieved
if we restrict {(S(), AJ(¥))} to be such that for every ¢,
A (?) = A e R(p) in the supremum in the preceding line.

In Appendix B we prove the following proposition, which

gives the solution of the optimization problem in the right-
hand side of Eq. (32).

Proposition 2
Suppose u == 0 is such that & = 0, where

k= @+tn)exp [—(—;: + 1) +g-log (1 +-§—):|— n. (33)
Then

T sup {E[(A +7) log (A + )] - [E(A+ )] log [E(A + /)]
AeR (D) .

- (#)e1a}
K )(p+n)log(p+n)+( Ig)nlogfz

- (k + 1) log (k + 71) - (—;‘r) k]. (34)
where the A*e Z2(p) which achieves the supremum in Eq. (34)
has distribution

P(A¥ = p) =

1- P(A* = 0) = (35)

'ulla-

In particular E[A*] = k.

From Egs. (31), (32) and (34) of Proposition 2, the value
of this optimization problem Eq.(28) for u=>0 such that
k = 0 is given by

sup JO\ST) - “[GTO\ST) + x]

0<x<¥

{(5), \ ()} € B ()
k\ .-, - - E\. .
{T[(—_—)(p+n)log(p+n)+ (1—-—-_—>nlogn
0<x<§ p p

- (k+ﬁ)10g(k+ﬁ)~<f#.—)k:l - ux}
T[(—%)(ﬁ+ﬁ)1og(ﬁ+ﬁ)+ (1 _ i)ﬁlogﬁ

- (k +7) log (k + i) —(%)k]

u
2
<

(36)

Moreover, the solution x*e [0,5] and {(S*(®), N¥@)Ye
7) #(P) of this optimization problem is given as follows for the
two cases 4> 0 and u=0.

Case 1: u> 0 such thatk =0

G x*=0 k 37D
P, with probability -5-
(i) N@) =
0, with probability (1 - ];T) (38)
Case 2: u = 0 (in which case k = 0) (see Appendix B).
(i) x* arbitrary in [0,5]. (39)
(i) A¥(?) given by Eq. (38).
Also, in either Case 1 or Case 2, Eq. (38) gives
TO\ ) =k (40)

In order to solve the optimization problem Eq.(27) we
now appeal to Proposition 1. From Proposition 1, we need to
find >0 so that the above solution x* ¢[0,5], {(S*(),
AD)le 7 #(P) of the optimization problem Eq. (28) is also
feasible for the optimization problem Eq (27). That is, we
need to find u > 0 so that (x*, {(S*(2), \}(N}) € Ly, p)-
In examining the definition of @F(p) and @F(s P), it is clear
that we need only find u = 0 so that

G () +x* = 5., @1
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To do this we consider two separate cases below:

Case I: s<(p+hn) exp[% log (1 +%)— 1} -n

In this case it follows from Eq. (33) that there is a u > 0 so
that

k = (p +R)exp [—%#;-mg (1 +%)— 1] -7 = §. (42)

So here, Case I above applies for this 4 > 0. Then from Egs.
(37), (40)and (42) it is clear that Eq. (41) is true. So the
hypothesis of Proposition 1 is satisfied. Moreover, Egs. (23),
(27), (38), (42) and Proposition 1 then give the following
expression for J.(§, P):

J G, 0) = T[(l ——g—)ﬁ log 7 +(%>(13 +7)log (P + 1)

-(ot+n)log(o+ ﬁ)] 43)
with
g=7F (44)
Case II: §=@p+i) expl:—g- log (1 +%>— 1] - "
Let u = 0. It then follows from Eq. (33) with u =0 that
. i B o
k=(@+n) exp[—p: log(l + E)— 1} -n<§. (45

Since u =0, Case II above applies. Now x* =§ - % satisfies Eq.
(39) since 0 <k <§. Also it follows from Eq. (40) that Eq.
(41) is true for this choice of x*. Hence the hypothesis of
Proposition 1 is satisfied. Finally Eqgs. (23), (27), (38), (45),
and Proposition 1 show that J.(§, b) is given by Eq. (43) with

o= @@+#) exp(% log <1 + %>_ 1) - 7. (46)

We can now conclude from Egs. (10), (24), (43), (44) and (46)
“the following upper bound on Cp(5, p):

CpG, ) < (1 - %)ﬁlog 7 +<-;l)(5 +7i) log (5 + 7)
(47

- (o +7)log (0 + 1),
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where ¢ is given by Eq. (11). That is, we have established that
the expression Eq. (12) in the theorem is an upper bound on
Cr(3,7) and hence, also an upper bound on C(F,5). This
completes Step (1).

_ Let us now carry out Step (2). In his derivation (Ref. 6)
of the peak power constrained channel capacity, Kabanov
constructed a sequence of signal processes {S,,(¢)} and asso-
ciated signal intensity rate process {A{")(¢)} satisfying the
peak power constraint, so that for each T, (1/T)I(S,,r;
N7) converges to the upper bound on channel capacity
as m - oo, Our derivation above in Step (1) of the upper bound
on the peak and average power constrained capacity differs
considerably from Kabanov’s work (Ref.6). In the sequel,
however, we shall show that Kabanov’s construction can still
be used to attain our upper bound.

Kabanov’s construction applied here is as follows. Denote
1, () as the indicator function of the set 4. For each integer
m =1, define a {0, 1}~ valued left-continuous stochastic pro-
cess {S,,() : t =0} by

]

S, (@) (32*) - (%) [1-2X15(,,O)] DY

(%)+(%) CDMO_iES (0) = 1

i - i. - (t) 3 =
(2> (2)( DM@ s (0) =0 (48)
for t > 0 where S,,(0) =S,,, , has distribution
2P =1)=1-PS. . =0 == (49
aS P, =1)= (mo“)‘,; (49

and where ¢ is given by Eq. (11). Here {M(9)} is a regular point
process (Ref, 9) with intensity rate process

It

W) = m 1S, (N +m (177"‘) 1365, (7))

m ,ime(t“) =0

1-oa) . -
m (T) , lme(t ) = 1. (50)
In other words, {S,,(#)} takes on values 0 or 1 and switches
between 0 and 1 at random times according to the occurrence
times of the point process {M(#)}. The instantaneous average
rate at which these point occurrences arrive at a given tite ¢
depends on the immediate past value of S, (f), being of rate m




when S, (t7)=0 and rate m(l- ofo) when S, (¢7)=1.
Finally, set

A™M@) = BIS,, (0] = 55, (). (51)
It can be seen from Egs. (48) and (51) that in the Kabanov
signalling scheme A")X(r) is a random telegraph wave type
process. A typical sample path of this process is shown in
Fig. 2 in the case when & = ¢/ § << 1 (for high peak-to-average
signal power ratios). When o << 1 it can be seen from the rate
process v(¢) given by Eq. (50) that S, (¢) stays in the O-state a
larger percentage of time than in the 1-state. This results in a
typical A{")(7) as shown in Fig. 2.

It is clear that 0<XA{)(r) <p. Kabanov (Ref.6) has
shown that E[S,,(#)] =a. An elaboration ‘of his derivation is
given in Appendix C for completeness. Since E[S, (9] = a,
then from Egs. (49) and (51) we have

ER@)] = o, (52)
so from Egs. (11) and (52) we can conclude that
i (T
T f EN™(n)] dr = o<5. (53)
0

Finally, it is clear from Eq.(51) that AWM = {A0M() :
0<¢<T} is a deterministic function of S,,,={S,,(:
0<t<7T}for each T>0. So ({S,,(D}, (A (@)} ¢ €, p)
for each integer m > 1. Thus we conclude from Eq. (7) that
foreachT>0and eachm > 1,

- - 1
C,G5,p)> T IS, 3N (54)

Next, a minor modification of Kabanov’s proof (Ref. 6) is
given in Appendix D to show that for each 7> 0,

. 1 - - -
lim '}‘I(SmT;NT) = (l—%)nlogn+(%)(p+n)

m—ree

log@+n)~ (c+n)log(o+h). (55)
Since C(, p) < Cr(5, ), Egs. (8), (47) and (55) show that
C(,p)=Cp(5,p) is given by Eq.(12), thus completing
Step (2) and establishing the theorem.

IV. Signal Bandwidth and Coded PPM

Consider the sequence of signal intensity rate processes
{A (9} given by Eq.(51) used in the previous section to
attain channel capacity. The bandwidth of this process can be
taken to represent the optical signalling bandwidth of the
channel. In order to examine the bandwidth of the {A(")()}
process, consider

K, (t,7) = Cov(A\I™)(0), \")(7)). (56)
Appendix E shows that
= =1
K,(t,7) = K\(t- 1) = Bo (1 - —g.—)e“m plo Yt =i,
' (57
Thus the power spectral density of this process is
2 02 1-92
- \m D
8, (@) = L (58)

1+ (%)

mp
So the bandwidth B of the {A{")(#)} process and hence also
the optical signalling bandwidth can be taken to be

= mp
== - (59)
We see from Egs. (55) and (59) that in order to approach
capacity with this sequence of signal processes {)xgm)(t)} given
by Eqgs. (48) and (51), the optical signalling bandwidth B has
to tend to infinity. Hence C(§,p) given by Eq.(12) is the
channel capacity without bandwidth constraint.

Let us examine the amount of bandwidth of {\¢")(#)}
required for the average mutual information (1/T)I(S,,,; N7)
to approach channel capacity C(§, p). It follows from Egs. (12),
(D-2), (D-7) and (D-13) that for 0<e¢< 1 and any 7> 0,

CG,8) - (UDIS,,;N,) = e CF, D) (60)
implies that the bandwidth B of {A{)(z)} satisfies
2 52
B> 1 _A_P__f_] (61)
e* | 2C%G,p)

where A is given by Eq. (D-6). Consider a case where 7i =0,
p =107 photons per second,§=10* photons per second so
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that C(5,5)= 6.9 X 10* nats per second. Then Eq.(61)
becomes

10
>2>< 10
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For € = 0.1, we require B> 2 X 1012 Hz and for ¢ = 0.01, we
require B >2 X 1014 Hz.

B Hz (62)

We now show that for the no background noise case
(= 0), using coded PPM to achieve capacity is much more
bandwidth-efficient than the signalling given by Eqgs. (48) and
(51). Consider a M-ary PPM modulation scheme shown in
Fig. 1 with signal duration T, pulse duration T/M and peak
power p. The M possible signal intensity rate functions
A (8), .. ., Agy(#) are given as in Fig. 1. The average power of
this signal set is

§= 1{’7. (63)

We shall assume that M > 3. For peak power constraint 7 and
average power constraint § given by Eq. (63), Corollary 1 gives
the channel capacity as

C = §log M nats/sec. (64)

Let us determine the capacity of a system that uses the PPM
modulation described in Fig. 1 along with the coding. Since
n=0, the demodulator then decides that the mth signal was
transmitted if a photoelectron is emitted in the mth time slot
in [0,7T], and declares an error E if no photoelectrons are
emitted in the entire interval [0, T]. Since the Poisson process
has independent increments, one use of the optical direct-
detection channel with modulator and demodulator is equiva-
lent to one use of the DMC with input alphabet {1, 2, ... ,M},
output alphabet {1,2,...,M,E} and transition probabilities

1t

1-n,j=k

PGlk)y =S n i =E1<k<M (65)

0 , otherwise

where

n =’ (66)
is the probability of having no photoelectrons emitted in the
time interval [0, 7. If we optimally code this DMC, then the

capacity of the above coded PPM channel is just the capacity
of the DMC given by Eq. (65). Let Cpp, denote the capacity
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of the optimally coded PPM channel. Then it is easy to show
(Ref. 11) that

Copyy = Ll_-ﬂ%_lgg__./’l_l nats/sec
1- e‘ET
= T log M nats/sec. (67)
From Eqs. (64) and (67) we see that
C —57"
PPM 1-¢
c - 3 T <1 _ (68)
and that
lim IZM = 1.
T0

Hence this optimally coded PPM system is capable of achieving
channel capacity C in the limit as 7~ 0. This also entails
increasing the signalling bandwidth to infinity because the
bandwidth Bpp,, of the PPM signal set can be taken to be

Bopys = - =(—’:—)% . (69)
Note from Egs. (68) and (69) that for any 0 <e <1,
C= Cppyy = €C (70)
implies that the bandwidth Bpp,, satisfies

L= oxp CB/Bay)
@/BPPM) = €. (71)

For small (B/Bppy,), Eq. (71) is approximately

B 7

PPM (72)

r‘;)l"m

Fore=0.01 we would require Bpp), ~5X 108 Hz when
p =107 photons/sec. This can be compared to the bandwidth
B > 2 X 1014 Hz required by the signalling scheme givén by
Egs. (48) and (51) to achieve the same rate. A comparison of
Eqgs. (72) and (61) shows the relative bandwidth advantage of
coded PPM versus the signalling scheme given by Egs. (48) and
(51). This is because B increases at least inversely with €2 while
Bppyy increases only inversely with e, where € is the desired
proximity to channel capacity. These results apply to the case




where 5/Bppy, is small. For large values of p/Bppy, even less
bandwidth is required for PPM modulation to approach
capacity.

V. Conclusion

We have derived the capacity of a free-space optical channel
using a direct detection receiver under both peak and average
signal power constraints and without a signal bandwidth con-
straint. This result is a generalization of Kabanov’s work
(Ref. 6), where only a peak power constraint was imposed. In
the absence of received background noise, an optimally coded
PPM system was shown to achieve channel capacity in the
limit as signal bandwidth approaches infinity. All of these
results did not consider the effect of a signal bandwidth
constraint. It would be interesting to derive the channel capa-
city under a fixed bandwidth constraint also.

Recent work (Ref. 3) has advocated considering the chan-
nel capacity per received signal photon. In the no background

noise case (7 = 0) it can be seen from Eq. (13) that

GG, p)

[0}

= log % nats/photon (73)

in the capacity per unit signal photon. It can be easily seen
from Egs. (14) and (73) that for a fixed peak signal power
constraint p, the capacity per unit signal photon increases to
infinity as the average signal power constraint § approaches
zero. However, as §— 0, the throughput channel capacity
C(5, ) > 0. Thus it does not appear meaningful to consider
capacity per signal photon without fixing the throughput
channel capacity. The expression Eq. (12) for C(§, ) can be
used in this regard to determine the average signal capacity per
unit signal photon for a fixed throughput capacity. This is
another problem of interest that has been addressed by
Butman, Katz and Lesh (Ref. 20) in the no background noise
case.
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Appendix A

Derivation of Eq. (19)

Let p(N,) be the sample function density (Ref. 1) of the
compound regular point process {N(¢): 0<¢<T} and
P(NyISy) be the conditional sample function density of
{N(®H) : 0<t<T)} given the message signal process {S(¥):
0 <?< T}. Then from Ref. 9 (Theorems 2 and 4) we have!

T
PN ISy) = exp [— f A (O +myde
0

T
+ f log (\(2) + ) dN(t)], (A-1)
]

T
pW7) = exp [ f A0 +m)ar
0

T
+ f 1og(>ts(t)+ﬁ)dN(z)]. (A-2)
(1]
Now since
A PWNLIS,)
I1(S;;Ny) = E log'—p(]—v—— , (A-3)
T

we have from Egs. (A-1) and (A-2) that
T
16,38, = E[ | &o-rera
0
T A(D+7
+ f log (m) d]V(t)]
0 §

® T A +7

=F [f 10g<'4\>\—(5-_'7) dN(t)]
0 8

T . ?\s(t) +n
= F [J. (?\s(t) + i) log (W—n:') dt]
0 )

Y The integrals with respect to N(¢) in Eqs. (A-1) and (A-2) and hence-
forth in the remainder of this paper is interpreted in the Ito sense
(Refs. 9, 10).
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T ADtr
+E [J; log <W)

(dN(D) - (Ay(5) + 7) dt)] , (A4)

where @ is because
ER M = EEENGIV,]] = EDO)].

Next, since

T
N(f) - f (D) + 7) dr
0

is a martingale (Ref. 14, (3.20)), then from a theorem on
stochastic integrals (Ref. 15, p. 437), the second expectation
in Eq. (A4) is zero. Hence Eq. (A-4) can be rewritten as

T
IS Ny) =f E[(\()+7) log (A () + )]
0

- B[00 + M log B (1) + A} dr
@ .r
= —[, {E[(\(D) + 7) log (\(2) + 7))
~EQ 0+ 1og R0 +M)]}dr, (AS)
which establishes Eq. (19). In Eq. (A-5) © is because
B[ @)+ 7) log R (D) +A)]
= E[E[Q®) + ) log A (5) + B)IN,]]
= E[E[O\ +A)INV,] log R (1) +7)]
(A-6)

= E[(A(0) +7) log R (&) +7)].

The above derivation is formal and not rigorous. We have
assumed interchanges of integration and expectation without
rigorous justifications. A rigorous derivation of Eq. (19) can be

found in Ref. 12.




Appendix B
Proof of Proposition 2

Let ZZ(P, k) be the set of all random variables A such that 0 <A < p and E[A] =& where 0 <k < p. Then

sup {E [(A +7)log (A + )] - [E(A + 7)) log [E(A +7)] - (—;—)E [A]}

AeFR (D)
= sup { sup  E[(A+7)log(A+#A)] - (k+h)log (k+ﬁ)+(%)k}- (B-1)
0< k< p CAe®(P, k)

Note from Fig. B-1 that if 0 < A <<p, then the possible values of E[(A + 1) log (A + 71)] must lie in the set of all y-coordinates of
the closed convex hull of the graph of y = (x + 7) log (x + 72) for 0 < x < . Hence the largest possible values lie on the cord AB.
These values can be achieved using a random variable A with the following distribution

’ PA=5)=1-PA=0)=a (B2)
where ae[0, 1] must be chosen so that E[A] = k in order for A to be in Z(p, k). In order for E[A] = k, we must have
o =klp. (B-3)

Hence

sup  E[(A +7) log (A +7)] = (ﬁ) (5 + 7) log (5 + 7)) + (1 - i_‘-) Ailog 7, (B-4)
, AeR(B, k) P p

where the A achieving the supremum is given by Egs. (B-2) and (B-3). Hence the optimization problem in Eq. (B-1) can be written
as ¢

Sup g(k)> (B-S)
0<k<ph
where g(k) is givén by
g(k) =(—§->(ﬁ +#)log(p+a)+ (l - -;f—)ﬁ log i - (k + 7)Y log (k + R) - (—I;T)Ic . {B-6)

Since g(k) is concave in k, the supremum in Eq. (B-5) is achieved by a & ¢ [0, p] such that g'(k) = 0, provided that such a k exists.
Setting g'(k) = 0 gets

=i

k=(ﬁ+ﬁ)exp(~ (%*1) +%108 (1+”—‘))"7- (B-7)

It follows immediately from Eq. (16) since u=> 0 that £ <<p in Eq. (B-7). Since by hypothesis of the proposition, k£ = 0, we can
conclude that k given by Eq. (B-7) achieves the supremum in Eq. (B-5). This establishes the proposition.

Also note from Eq. (B-6) that when u = 0, g(0) = 0 and g'(0) > 0. This means that when u = 0, the solution & to g'(k) = 0 must
be nonnegative. So when 1 = 0, the k given by Eq. (B-7) is nonnegative.
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(B +n) log G +7) B
y = (x + 1) log {x +7)

Y
x

CLOSED CONVEX HULL OF THE
GRAPH OF

y =(x + i) log (x +#) FOR
Osx<p

Fig. B-1. Geometry of optimization




Appendix C
Proof that E[S,,,(1)] = «

Since M(f) is nonnegative integer-valued, (1) ® =
cos (m M(D)). So Eq. (48) can be rewritten as

S (1) = (%)+ [1 15, - -%—]cos @ M@), (C-1)

for > 0. So for each ¢, S, (#) is a function of M(#) and hence
we may use the Stochastic Differential Rule (e.g., Ref. 10,
Theorem 4.2.2) to obtain

as, () ={(—;—)+ [1 18O~ ;—]cos (n M(t) + 1)

- ((—%—)+ [1 {1}(Sm ) - %:I cos (m M(t))) } am(z)

6)]
= [1-25, ()] dM()
= [1-28, (O] v(r)dt

+[1-28, (9] [dM() - v(2) dr]

@
=[1-25, ] [m 1616, ™)

+m (I—;E) 1 {1}(Sm(t_))] dt
+[1- 2Sm (0] [dM(t) - w(r) dt], (C-2)

where @ js obtained using Eq. (C-1) and @ s because of
Eq. (50). Rewriting Eq. (C-2) in integral form gets

t
S0 = 5, (0)+ f [1-28,,G)] [m 1 )5, ()
0
+m (l—;—"‘) 143y(S,,, @] du

’ t
+ f [1-28, )] [dM(u)- v(u) du]
0

(D t
=S, (0)+ f ma™! (@~ S () du
0

t
+ f [1-25, ()] [dM(u) - v(u) du], (C-3)
0

where @ follows since S, (?) is either O or 1. Now it follows
from Eq. (49) that £[S,,(0)] = a. Next, since

M) - f t () du
(i

is a martingale (Ref. 14, (3.20)), it follows that the expected
value of the last integral in Eq. (C-3) iz zero (Ref. 15, p. 437).
So, taking expected values in Eq. (C-3) gets

t
E[S, ()] = a+ma™ f [a- E[S, ()]] du. (C-4)
0
The unique solution of this initial value problem Eq. (C-4)
is

EIS, @) = a (C-5)
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Appendix D

Derivation of Eq. (55)

Note that since §,,(#) =0 or 1, it follows from Eq. (C-5)
that P(S,,(9) = 1) =a. So from Egs. (49) and (51) it follows
that

E[(\™(@) + ) log A\f™(#) + 7))
= (—‘;’—)(p + 73) log (B + 71) + (1 - %)ﬁ logii. (D-1)
p p
So from Egs. (19) and (D-1),
%I(SmT;NT) - (1 - —;—)ﬁ log 7 - (%)(ﬁ +71) log (B + )
+(o+7)log(o+n)

T
= 71‘_ f E{f (’X;m) ) - o)y dt (D-2)
0

where
fx) = (x+n)log (x +7), (D-3)
and
~ A
AM@) = EPNM@IN,)
= BE[S, (HIV,]
A
=psS,, (0. (D-4)
Now it can be easily shown that for 0 <x'<p,
/&) - flo)I<Alx- ol (D-5)

where

A = max [f@)_ - f(0) ‘ 1)~ ()
D-o¢ o
since 0 < 0 <p. So from Egs. (D-4), (D-5) and (49), we have
1 (7
L f EUR@) - f(o) dr
0
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] s (D'6)

TN S
<T”f E{IS (- al}dt

b 0

© _ 7

<4k f E[GS,,(0) - &) ar
0

45 (" pis - a2y
o f E[S, 071 - o)'2 ar.
0

1 ®

(D-7)
Here D is from Jensen’s inequality and @ s because
E[S (9] = E[E[S, (OIN,]] = E[S, (1)] = «

from Eq. (C-5). The remainder of the derivation now follows
Kabanov’s proof exactly to show that E[S, (9))?] -o? con-
verges to zero as m— e uniformly in #. Specifically, from
Eq. (C-3) and (Ref. 16, Eq, 1.6a) we can write

S () = ma™' (a- S, (9)dt

PE[S, () (S, ()-8 ()N, ]
bSO+

« [AN() - B S, () + 7) dt]

@ ~
= ma”! (a- 8 (1) dt

58 Ha-8, )
BRI NGEF

- [dN@) - (B S, (1) + A) drl, (D-8)




where @ is because S, (1) =52 (2). Next, using the Stochastic
Differential Rule (Ref. 10, Theorem 4.2.2), we obtain

d@S, (1) = [2m '8 (-5 ©)

B35, (0 1-8 (N2
* BS (H)+n !

25 (S, () (1- 8, ()
TS wa

(58,001 -8, m)\>
¥ S (D)+i

- [dN(D) - (B8, (1) + @) dt]. (D-9)

Now using the martingale property of
t
NQ@) - f (B8 (u)+7)du
0

as in Eqgs. (A-4), (A-5) and in (C-4), we can take the expected
value of the integral of Eq. (D-9) to obtain

FIG, P = o+ 2ma~t [ a2 - 513, )
0

e [58 @a-3 wn?
+.£ E ﬁ?m(u)ﬂi du.

(D-10)

Define

_|BS,ma-8, on®
§0) = F 58 _(1)+h

<HE[S,, ) (1-8, ()
<BE[S, )]
=g. (D-11)

Now since (§m (0))? =(£1S,,(0)])? = a2, the unique solu-
tion to the initial value problem Eq. (D-10) is

B[S, ()] = a2 ¢mo 't

t
+ e—2ma—lt f (g(t) + 2ma)
0

-1
e U gy (D-12)

Since from Egq. (D-11), 0<g(u) <o, we have from
Eq. (D-12) that

E[S, )] -

1

<

< W . (D-13)

Therefore Egs. (D-2), (D-7) and (D-13) establish Eq. (55).
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Appendix E
Derivation of Eq. (57)

It follows from Egs. (51) and (C-5) that

K\ (t,7) = B {E[S,,()S, (D] - ). (B-D)

Since P(S,,,(z) = 1) = a fromEq. (C-5),it follows that for ¢ = ,

E[S, (1)S,,(0] = E[S, (D EIS,, OIS, ()]

= aE[5, (0)IS, (1) = 1]. (E-2)

Then we may write, using Eq. (C-3), for ¢t =7
t
S, (0 = S (1) + ma™? f (-8, (u)) du
T

+ ft(l - 28, W)) [aM(y) - v(u) du].

(E-3)
Hence for¢ > 71,
E[Sm(t)lSm('r) = 1]
i t
=1 +ma! f (o - E[Sm(u)ISm(T) = 1Ddu,
' (E-4)
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because

t
E{f (1-28, @)[dMu - v(u)du] ISm(r) = 1}

t
- E{ f (1- 28,,@) [d (M)

ne

- M(7)) ~ v(u) du] IS, (1) =1 } 0, (E-5)

where @ follows since

{M(s)—M(T)-fS v(u) du:s>7'}

is a martingale given that S, (7) = 1.

Since E[S,,(7)IS,, () = 1] =1, the solution of the initial
value problem Eq. (E4) can be shown to be

BIS,, (18,0 =1] =(1- @) e™* ¢~ Dta, (B6)

when ¢ 2 7. Thus Eqs. (E-1), (E-2) and (E-6) gets

-1
K,(2,7) =p?a(l- a)e™™® (-7 (B-7)

for ¢ 2 7. Since K, (¢, 1) =K, (7, t) and since a = o/p, Eq. (57)
follows from Eq. (E-7).




